The Symptoms of Osteoarthritis and the Genesis of Pain

David J. Hunter, MBBS, MSc, PhD\(^a\)
Jason J. McDougall, BSc, PhD\(^b\)
Francis J. Keefe, PhD\(^c\)

\(^a\) Division of Research, New England Baptist Hospital, 125 Parker Hill Avenue, Boston MA 02120, USA
\(^b\) Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
\(^c\) Pain Prevention and Treatment Research Program, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Suite 340, 2200 West Main Street, Durham, NC 27705, USA

* Corresponding author. Division of Research, New England Baptist Hospital, 125 Parker Hill Avenue, Boston MA 02120.

E-mail address: djhunter@caregroup.harvard.edu

A version of this article originally appeared in the 34:3 issue of the Rheumatic Disease Clinics of North America.
Preparation of this article for Francis Keefe was supported in part by NIH grants AG026010, AR47218, AR049059, AR050245, and AR05462.

This article delineates the characteristic symptoms and signs associated with OA and how they can be used to make the clinical diagnosis. The predominant symptom in most patients is pain. The remainder of the article focuses on what we know causes pain in OA and contributes to its severity. Much has been learned over recent years; however, for the budding researcher much of this puzzle remains unexplored or inadequately understood.

Keywords
Osteoarthritis
Symptoms
Pain
Symptomatic osteoarthritis (OA) causes substantial physical and psychosocial disability. In the early 1990s, more than 7 million Americans were limited in their ability to participate in their main daily activities, such as going to school or work or maintaining their independence, simply because of their arthritis. The risk for disability (defined as needing help walking or climbing stairs) attributable to knee OA is as great as that attributable to cardiovascular disease and greater than that due to any other medical condition in elderly people. Like arthritis prevalence, the prevalence of arthritis-related disability is also expected to increase by the year 2020, when an estimated 11.6 million people will be affected.

Compounding this picture are the enormous financial costs that our nation bears for treating arthritis and its complications, and the disability that results from uncontrolled disease. The total annual cost in the United States is almost $65 billion—a figure equivalent to a moderate national recession. This amount includes an estimated medical bill of $15 billion each year for such expenses as 39 million physician visits and more than half a million hospitalizations (Centers for Disease Control, unpublished data, 1999). OA accounts for 90% of hip and knee replacements. The balance is largely due to indirect costs, such as those from wage losses. Arthritis has thus become one of our most pressing public health problems—a problem that is expected to worsen in the next millennium with the increasing prevalence of this disease.

This article delineates the characteristic symptoms and signs associated with OA and how they can be used to make the clinical diagnosis. The predominant symptom in most patients is pain. The remainder of the article focuses on what we know causes pain in OA and contributes to its severity. Much has been learned over recent years; however, for the budding researcher much of this puzzle remains unexplored or inadequately understood.

What is osteoarthritis?

OA can be viewed as the clinical and pathologic outcome of a range of disorders that result in structural and functional failure of synovial joints. OA occurs when the dynamic equilibrium between the breakdown and repair of joint tissues is overwhelmed. This progressive joint failure may cause pain, physical disability, and psychologic distress, although many people who have structural changes consistent with OA are asymptomatic. The reason for this disconnect between disease severity and the level of reported pain and disability is unknown.

Typically OA presents as joint pain. During a 1-year period, 25% of people older than 55 years have a persistent episode of knee pain, of whom about one in six consult their general practitioner about it. Approximately 50% of these people have radiographic knee OA. The usefulness of radiographs relates more importantly to the exclusion of other diagnostic possibilities rather than confirmation of osteoarthritic disease. Factors differentiating symptomatic OA from asymptomatic radiographic disease are largely unknown. Symptomatic knee OA (pain on most days and radiographic features consistent with OA) occurs in approximately 12% of those older than age 55.

Although OA is common in the knee, it is even more prevalent in the hands, especially the distal (DIP) and proximal (PIP) interphalangeal joints and the base
of the thumb. When symptomatic, especially so for the base of thumb joint, hand OA is associated with functional impairment. OA of the thumb carpometacarpal (CMC) joint is a common condition that can lead to substantial pain, instability, deformity, and loss of motion. After the age of 70 years, approximately 5% of women and 3% of men have symptomatic OA affecting this joint with impairment of hand function.

The prevalence of hip OA is about 9% in Caucasian populations. In contrast, studies in Asian, black, and East Indian populations indicate a low prevalence of hip OA. The prevalence of symptomatic hip OA is approximately 4%.

What are the characteristic symptoms of osteoarthritis?

The joint pain of OA is typically described as exacerbated by activity and relieved by rest. More advanced OA can cause rest and night pain leading to loss of sleep, which further exacerbates pain. The cardinal symptoms that suggest a diagnosis of OA include:

Pain (typically described as activity related or mechanical, may occur with rest in advanced disease; often deep, aching and not well localized; usually of insidious onset)
Reduced function
Stiffness (of short duration, also termed “gelling” [ie, short-lived stiffness after inactivity])
Joint instability, buckling, or giving way
Reduced movement, deformity, swelling, crepitus, and increased age (OA is unusual before age 40) in the absence of systemic features (such as fever)
Pain-related psychologic distress if pain persists.

Tailoring the physical examination: what signs are associated with osteoarthritis?

Physical examination should include an assessment of body weight and body mass index, joint range of motion, the location of tenderness, muscle strength, and ligament stability. For lower limb joint involvement, this should include assessment of body mass and postural alignment in standing and walking. A goniometer can be used to permit the examiner to visually bisect the thigh and lower leg along their lengths. The centers of the patella and ankle should be located and marked with a pen. The center of the goniometer is placed on the center of the patella, and the arms of this goniometer are extended along the center of the thigh and along the axis of the lower leg to the center of the ankle.

The features on physical examination that suggest a diagnosis of OA include:

Tenderness, usually located over the joint line
Crepitus with movement of the joint
Bony enlargement of the joint, (eg, Heberden and Bouchard nodes, squaring of the first CMC, typically along the affected joint line in the knee)
Restricted joint range of motion
Pain on passive range of motion
Deformity, (eg, angulation of the DIP and PIP joints, varus [bowed legs] deformity of
the knees)
Instability of the joint
Altered gait
Muscle atrophy or weakness
Joint effusion

The diagnosis of osteoarthritis

Bearing in mind that radiographs are notoriously insensitive to the earliest pathologic features of OA, the absence of positive radiographic findings should not be interpreted as confirming the complete absence of symptomatic disease. Conversely, the presence of positive radiographic findings does not guarantee that an osteoarthritic joint is also the active source of the patient's current knee or hip symptoms; other sources of pain, including periarticular sources, such as pes anserine bursitis at the knee and trochanteric bursitis at the hip, often contribute.\[7\] According to the American College of Rheumatology criteria for classification of hand OA (unlike the hip and knee, in which radiographs enhance the sensitivity and specificity), radiographs are less sensitive and specific than physical examination in the diagnosis of symptomatic hand OA.\[17\]

In clinical practice the diagnosis of OA should be made on the basis of the history and physical examination; the role of radiography is to confirm this clinical suspicion and rule out other conditions.

When disease is advanced, it is visible on plain radiographs, which show narrowing of joint space, osteophytes, and sometimes changes in the subchondral bone. MRI can be used in infrequent circumstances to facilitate the diagnosis of other causes of joint pain that can be confused with OA (osteochondritis dissecans, avascular necrosis). An unfortunate consequence of the frequent use of MRI in clinical practice is the frequent detection of meniscal tears. In the interest of preserving menisci, be cautioned that meniscal tears are nearly universal in people who have knee OA and are not necessarily a cause of increased symptoms.\[19\] The penchant to remove menisci is to be avoided, unless there are symptoms of locking or extension blockade.\[19\]

Do not rely on laboratory testing to establish the diagnosis of OA. Because OA is a noninflammatory arthritis, laboratory findings are expected to be normal.

What are the diagnostic criteria for osteoarthritis?

When making the diagnosis of OA, consider using the criteria of the American College of Rheumatology for diagnostic purposes and classification of OA of the hip, knee, and hands in patients who have pain in these joints.\[17, 20\] These are the criteria that are used in research studies and should be used to inform your diagnosis in individuals; not limiting your information gathering to these criteria and considering the wealth of other information that patients who have OA may provide can help to either confirm or refute an OA diagnosis.

In the process of taking a history it is important to ask how the pain has affected the person's ability to function at home, at work, and in recreational activities. Also, ask about how the person is coping with pain and how well that is going. It is
important to look for signs of psychologic distress (eg, signs of anxiety, such as excessive pain-avoidant posturing, sleep-onset insomnia, or signs of depression, such as early morning wakening, weight loss, irritability, or a marked in increase in memory/concentration problems).

Factors that contribute to pain

The source of pain is not particularly well understood and is best framed in a biopsychosocial framework, which posits that biologic, psychologic, and social factors all play a significant role in pain in OA. [21] Fig. 1 is a schematic representing some of this complexity.

![Fig. 1](image-url) Key elements of OA pain pathophysiology and examples of pharmacologic intervention points. Observations of pain resolution following intra-articular local anesthetic and following joint replacement would implicate a peripheral drive in most patients who have OA. In the periphery, the interaction between structural pathology and the immune and nervous systems perpetuate the pain experience. Over time, as structural pathology develops, the principle algogenic mechanisms and mediators change. Furthermore, the dysfunction in central processing of information at the spinal and cortical levels has also been observed in patients who have OA, affecting sensory and motor systems. This phenomenon, in combination with altered affective and cognitive functions, may underpin the pain experience in other patient subsets. ASIC, acid-sensing ion channel; BDNF, brain-derived neurotrophic factor; CB, cannabinoid receptor; CCR, chemokine receptor; CGRP, calcitonin gene-related peptide; COX, cyclooxygenase; DOR, delta opioid receptor; EP, E prostanoid receptor; FAAH, fatty acid amide hydrolase; GABA, ɣ-aminobutyric acid; IL, interleukin; mGluR, metabotropic glutamate receptor; mPGES, membrane or microsomal PGE synthase; N-type Ca2+, neuronal-type calcium channels; NE, noradrenaline; NGF, nerve growth factor; NR2B, N-methyl D-aspartate receptor 2B subunit; P2X, purinergic 2X ionotrophic receptor; SSRI, selective serotonin reuptake inhibitor; SubP, substance P; T-type Ca2+, transient type Ca2+ channels; TNF, tumor necrosis factor; TNFR, tumor necrosis factor receptor; Trk, tyrosine kinase; TRP, transient receptor potential; VEGF, vascular epidermal growth factor. (From Dray A, Read SJ, Dray A, et al. Arthritis and pain. Arthritis Res Ther 2007;9(3):212; with permission.)

From a biologic perspective, neuronal activity in the pain pathway is responsible for the generation and ultimate exacerbation of the feeling of joint pain. During inflammation chemical mediators are released into the joint, which sensitize primary afferent nerves such that normally innocuous joint movements (such as increased physical activity, high-heeled shoes, weather changes) now elicit a painful response. This response is the neurophysiologic basis of allodynia (ie, the sensation of pain in response to a normally nonpainful stimulus, such as walking). Over time this increased neuronal activity from the periphery can cause plasticity changes in the central nervous system (CNS) by a process termed “wind-up.” In this instance, second-order neurones in the spinal cord increase their firing rate such that the transmission of pain information to the somatosensory cortex is enhanced. This central sensitization phenomenon intensifies pain sensation and can even lead to pain responses from regions of the body remote from the inflamed joint (ie, referred pain).

Constitutional factors that can predispose to symptoms include self-efficacy, pain catastrophizing, and the social context of arthritis (social support, pain...
communication); all are important considerations in understanding the pain experience.

Local tissue pathology

The structural determinants of pain and mechanical dysfunction in OA are also not well understood, but are believed to involve multiple interactive pathways. Articular cartilage is aneural and avascular. As such, cartilage is incapable of directly generating pain, inflammation, stiffness, or any of the symptoms that patients who have OA typically describe. Given its relative unimportance to OA's symptomatic presentation, it is ironic that articular cartilage has received so much attention, whereas other common symptom sources in the joint are ignored.

In contrast the subchondral bone, periosteum, periartricular ligaments, periartricular muscle spasm, synovium, and joint capsule are all richly innervated and are the source of nociception in OA.

In population studies there is a significant discordance between radiographically diagnosed OA and knee pain. Although radiographic evidence of joint damage predisposes to joint pain, it is clear that the severity of the joint damage on the radiograph bears little relation to the severity of the pain experienced.

Using other imaging modalities, such as MRI, significant structural associations, such as bone marrow lesions, subarticular bone attrition, synovitis, and effusion, have been related to knee pain. It remains unclear which of these local tissue factors predominate because until recently these analyses did not account for the fact that much of the structural change is collinear (a person who has more severe disease has worse structural change in multiple tissues, including the bone synovium, and so forth) and were not adjusting for other tissue changes. A recent analysis confirmed most beliefs that it is likely that changes in the subchondral bone and synovial activation/effusion predominate.

Lesions in the bone marrow play an integral if not pivotal role in the symptoms that emanate from knee OA and its structural progression. Bone marrow lesions were found in 272 of 351 (77.5%) people who had painful knees compared with 15 of 50 (30%) people who had no knee pain ($P < .001$). Large lesions were present almost exclusively in people who had knee pain (35.9% versus 2%; $P < .001$). After adjustment for severity of radiographic disease, effusion, age, and sex, lesions and large lesions remained associated with the occurrence of knee pain. More recently their relation to pain severity was also demonstrated. Other bone-related causes of pain include periostitis associated with osteophyte formation, subchondral microfractures, and bone angina due to decreased blood flow and elevated intraosseous pressure. The particular bone pathology most responsible for pain remains elusive; however, identifying this would be a major advance in delineating appropriate therapeutic targets. One likely source that remains underexplored is that of intraosseous hypertension. The pathophysiology remains unclear, although phlebographic studies in OA indicate impaired vascular clearance from bone and increased intraosseous pressure in the bone marrow near the painful joint. What may subsequently cause pain is as yet unknown. Increased trabecular bone pressure, ischemia, and inflammation are all possible stimuli.
The synovial reaction in OA includes synovial hyperplasia, fibrosis, thickening of synovial capsule, activated synoviocytes, and in some cases lymphocytic infiltrate (B and T cells and plasma cells). The site of infiltration of the synovium is of obvious relevance because one of the most densely innervated structures of the joint is the white adipose tissue of the fat pad, which also shows evidence of inflammation and can act as a rich source of inflammatory adipokines. Synovial causes of pain include irritation of sensory nerve endings within the synovium from osteophytes and synovial inflammation that is due, at least in part, to the release of prostaglandins, leukotrienes, proteinases, neuropeptides, and cytokines. Synovitis is frequently present in OA and may predict other structural changes in osteoarthritis and correlate with pain and other clinical outcomes. Synovial thickening around the infrapatellar fat pad using noncontrast MRI has been shown on biopsy to represent mild chronic synovitis. A semiquantitative measure of synovitis from the infrapatellar fat pad is associated with pain severity, and similarly, change in synovitis is associated with change in pain severity.

Another source of joint pain in OA may be from the nerves themselves. Following joint injury in which there is ligamentous rupture, the nerves that reinnervate the healing soft tissues contain an overabundance of algesic chemicals, such as substance P and calcitonin gene-related peptide (CGRP). An interesting observation of these new nerves was that their overall morphology was abnormal with fibers appearing punctate and disorganized. Because these phenomena are consistent with the innervation profiles described in nerve injury models, we speculate that injured joints may develop neuropathic pain posttrauma. Treatment of inflamed joints with the neuropathic pain analgesic gabapentin can also relieve arthritis pain.

Innervation in the joint

The musculature, articular capsule, synovium, tendons, ligaments, and subchondral bone of the joint have a rich nerve supply, whereas the articular hyaline cartilage is aneural. In addition to postganglionic sympathetic efferents, joints are supplied by numerous sensory fibers whose subcategorization is based on distinct anatomic features. Joint afferents that have a thick diameter and are myelinated are called Aβ (Group II) fibers, thin nerves with a myelin sheath that disappears in the terminal region to become a free nerve ending are termed Aδ (Group III) fibers, and the thin unmyelinated nerves are C (Group IV) fibers. Proprioceptive Aβ fibers of the joint terminate in the capsule, fat pad, ligaments, menisci, and periosteum, and nociceptive Aδ and C fibers innervate the capsule, ligaments, menisci, periosteum, and mineralized bone (in particular in regions of high mechanical load).

Joint nociceptors are typically localized within specific articular structures and their receptive field is normally restricted to the joint. During inflammation, however, this receptive field can expand into adjacent areas such that mechanical stimuli in nonarticular tissues, such as the surrounding muscle, can suddenly become activated. A typical neuron in the spinal cord with a receptive field in the joint may now respond to physical stimulation of extra-articular muscle, for example.
Under disease conditions, the innervation territories of the various nerve fibers are highly plastic. An example of such plasticity is the innervation of normally aneural tissues, such as cartilage, with substance P– and CGRP-positive nerves in patients who have OA. The normally mechanically insensitive cartilage becomes potentially a candidate for tibiofemoral pain in OA, although this has never been shown electrophysiologically. Furthermore, these peptide-containing nerves may also accelerate disease progression by way of localized neurogenic inflammatory mechanisms.

Tissue injury activates the nociceptive system, which generates the subjective pain experience. Spontaneous pain and mechanical hypersensitivity can develop as a consequence of sensitization of primary afferents directly by locally released inflammatory mediators and following sensitization of neuronal processes in the spinal cord (central sensitization) or higher centers.

In arthritis, inflammatory mediators, such as bradykinin, histamine, prostaglandins, lactic acid, substance P, vasoactive intestinal peptide (VIP), and CGRP, are released into the joint. These mediators reduce the firing threshold of joint nociceptors, making them more likely to respond to both non-noxious and noxious painful stimuli. As the disease progresses, more and more of these mediators accumulate in the joint, thereby triggering a self-perpetuating cycle of pain generation. The first study to explore which chemical mediators are responsible for OA pain in an animal model focused on the neuropeptide VIP. VIP is a 28–amino acid peptide that was originally identified in the porcine intestine where it controls vascular tone and enzyme secretion. More than 20 years ago, VIP was localized in the synovial fluid and serum of patients who had arthritis and then the peptide was forgotten by the rheumatology field. Recently it was shown that local administration of VIP to rat knees causes synovial hyperemia and sensitization of joint afferents leading to pain. Treatment of OA knees with a VIP antagonist significantly attenuated peripheral sensitization and alleviated pain behavior in this animal model of degenerative joint disease. VIP inhibition may thus be a useful means of controlling OA pain.

In addition to sensitizing mediators being released into OA joints to elicit pain, evidence is beginning to emerge suggesting that naturally produced desensitizing agents may also contribute to pain modulation in the joint. For example, the endogenous opioid endomorphin is present in high concentration in arthritic knees where it can reduce afferent firing rate in response to joint movement. Similarly, endocannabinoid activity has been reported in OA knees and activation of the articular cannabinoid system can dramatically offset the hyperactivity of joint nociceptors. Even though these endogenous analgesic agents are present in significant amounts in articular tissues, the question still remains as to why the body’s natural pain killers are unable to provide any appreciable relief from the debilitating effects of joint pain.

Silent Nociceptors

Polymodal Aδ and C fibers that innervate the joint increase their firing rate in response to noxious mechanical stimuli and in the presence of various chemical agents, such as those released during inflammation. In addition to these classic nociceptors, there are also several fibers in the joint that are not normally activated
by noxious stimulation but become responsive when damage or inflammation occurs in the joint. These fibers, called silent nociceptors, can make a major contribution to the pain sensation.\(^{66}\)

The neuroanatomy of mineralized bone, bone marrow, and periosteum is well defined.\(^{45}\) A\(\beta\) fibers, A\(\delta\) fibers, C fibers, and sympathetic fibers distribute densely throughout the periosteum, entering bone in close association with blood vessels.\(^{58}\) Of these tissues, the periosteum has the greatest density of sensory and sympathetic innervation, which may be further enhanced during joint inflammation. Electrophysiologic studies of the mechanosensitivity of joint innervation indicate that generally A\(\beta\) fibers are activated by non-noxious normal working range joint movement, whereas approximately 50\% of A\(\delta\) and 70\% of C fibers are classified as high threshold units.\(^{59}\) During inflammation, A\(\delta\) and C fibers show increased mechanosensitivity. Low threshold populations exhibit exaggerated responses, whereas high threshold populations and units that were initially mechanoinensitive are sensitized and now respond to movements in the normal working ranges of the joint.\(^{60}\) It is this increased activity of low threshold units and the awakening of the silent nociceptors that conspire to intensify joint pain sensation in arthritis.

Central mechanisms

The A\(\delta\) fibers transmit impulses centrally through the peripheral nerve up through the dorsal root and into the dorsal horn of the spinal cord. The C fibers conduct impulses relatively slowly through the same route to the CNS (see Fig. 2).\(^{61}\) The A\(\delta\) fibers terminate in laminae I and V of the dorsal horn, and the C fibers terminate predominantly in lamina II. From the dorsal horn, the signals are carried along the ascending pain pathways to the brain stem, hypothalamus, thalamus, and cerebral cortex.

Descending pathways originating in supraspinal centers (somatosensory and limbic cortices) project through the periaqueductal gray area to the dorsal horn and modulate activity in the dorsal horn by controlling spinal pain transmission.\(^{62}\)

Processing the Perception of Pain

Nociception is processed throughout the nervous system, but it reaches conscious levels and is interpreted through connections between the thalamus and cortex. There are two main systems in the brain that are responsible for the perception of pain: the lateral system and the medial system of the lateral spinothalamic tract.\(^{63}\) The lateral system involves the activation of thalamic nuclei in the ventral lateral thalamus and the relay of information to the somatosensory cortex, where the noxious stimulus is analyzed for location, duration, intensity, and quality.
The medial system involves the relay of information by other (midline and intralaminar) thalamic nuclei to different parts of the brain, such as the amygdala. The medial system comprises large areas of the brain that are responsible for pain perception and for functions in other contexts, such as affective responses, attention, and learning; this may explain the discrepancy between the degree of joint damage and the severity of pain. Because of the importance of the medial system in OA pain, a nonpharmacologic approach to management may be just as important as a pharmacologic strategy.

Finally, the perception of pain is modified by the patient's affective status (eg, level of depression, anxiety, or anger) and cognitive state (eg, pain beliefs, expectations, memories of pain). Age, gender, socioeconomic status, racial and cultural background, pain communication skills, and previous pain experiences can contribute to the way a patient perceives pain.

Central sensitization

The characteristic feature of most chronic pain is that hitherto non-noxious stimuli, such as walking or standing, are perceived as painful. It is now clear that pain pathways, far from being static or hardwired, exhibit marked plasticity and that sensitization at peripheral, spinal, and cortical levels accounts for many of the clinical features associated with chronic pain. Consistent with this, the three chronic pain categories currently recognized, including neuropathic pain, neuroplastic or inflammatory pain, and idiopathic pain, all exhibit features of an underlying central sensitization state.[38]

Like peripheral sensitization previously described, central nociceptive transmission in the dorsal horn also can be sensitized. Increased input from peripheral nociceptors modulates spinal cord pain-transmitting neurons and leads to increased synaptic excitability and decreased firing thresholds that outlast the initiating input, amplifying responses to both noxious and innocuous inputs.

Neuronal response to noxious input is thus exaggerated (hyperalgesia), or normally innocuous input is now perceived as painful (allodynia), and sensitivity is expanded, with pain experienced beyond the original site of tissue damage (secondary hyperalgesia).[64]

Central sensitization involves activation, modulation, and modification. Modification of dorsal horn neurons leads to changes in receptors and transmitters in addition to structural reorganization (or physical rearrangement of the neurons) and disinhibition of dorsal horn nociceptors. According to one theory, disinhibition of dorsal horn nociceptors results from the death of local inhibitory interneurons, which potentially are replaced by excitatory Aδ fibers that “sprout” from the dorsal horn. Peripheral and central sensitization represent the plasticity, or modifiability, of the nervous system, which can mold itself to new functions in response to changing inputs.[38], [64]

Hyperexcitability of Spinal Cord Neurons

Spinal cord hyperexcitability can originate from either nociceptive or neuropathic types of pain, although the mechanisms through which this occurs may be
different. When a noxious stimulus is used to induce active inflammation, the sensitized area expands and additional neurons become activated. This process lowers the pain threshold and increases the sensitivity of adjacent neurons to stimulation. Central sensitization occurs as a consequence of tissue damage and peripheral sensitization and also as a consequence of abnormal discharges from damaged nerve fibers. A spinal cord neuron that has been sensitized often has an expanded receptive field. In addition, as a result of the process of central sensitization, more neurons in a spinal segment respond to noxious stimuli. Central sensitization has been seen mainly in the wake of tissue damage. In some forms of neuropathy (eg, after sectioning of peripheral nerves) many spinal cord neurons are silent and have no receptive field. Only a few neurons are active and show abnormal discharges. Other parts of the CNS also have the capacity for plasticity. After denervation, cortical maps may be changed, and this cortical process may be responsible for the chronicity of pain. It is this plastic quality of the CNS that should enable us to reverse chronic pain in long-term diseases such as OA. By inhibiting the nociceptive input from the joint to the CNS it should be possible to rewire the brain gradually, such that the sensation of chronic joint pain can be unlearned. Peripherally restricted pharmacologic agents, perhaps in combination with a physical therapy approach, may help us ultimately to dismantle the neurophysiologic processes that were constructed during OA pain development.

Modulatory Mediators

Glutamate is the primary excitatory neurotransmitter in the CNS. It is the neurotransmitter in Aβ, Aδ, and C fibers. During repetitive noxious stimulation, glutamate activates N-methyl D-aspartate (NMDA) in the spinal cord, and neuropeptide receptors are activated by neuropeptides that are co-released with glutamate from synaptic endings. Additionally, many modulatory mediators are present, including substance P, CGRP, opioids, neurotrophins, and prostaglandins, all of which also act in the CNS. Substance P, which is released in the superficial part of the dorsal horn into the gray matter, increases the pain response to noxious inputs from spinal cord neurons.

Prostaglandins are also important, both in the periphery and in the spinal cord. They have a major impact on the sensitivity of neighboring spinal cord neurons.

The Concept of Wind-Up

When action potentials reach the nerve terminal, the presynaptic membrane is depolarized. This process opens calcium channels, and calcium flows into the presynaptic ending, where it triggers the release of transmitters. The definition of wind-up is specific: In a classic situation, a peripheral nerve is stimulated repeatedly at C-fiber strength. This stimulation produces a response in a spinal neuron that grows from stimulus to stimulus; this is termed wind-up. Wind-up is short lived, surviving stimulation for only seconds to minutes. Wind-up intensifies pain during repetitive noxious stimulation. It is probably not produced by increased transmitter release but rather by postsynaptic changes, such as NMDA receptor activation and, possibly, by calcium influx into the postsynaptic neuron. Wind-up also occurs when the skin is stimulated repeatedly with short heat pulses.

The Sympathetic Response
When a noxious stimulus is received, the sympathetic nervous system releases norepinephrine into the peripheral tissues, which decreases the firing threshold of peripheral nerve cells and makes them more sensitive to stimulation. During noxious painful movement, sympathetic postganglionic nerve activity increases leading to an increase in mean arterial pressure and heart rate. Because sympathetic nerve stimulation leads to synovial vasoconstriction, it is possible that the resulting hypoxemia could contribute to joint pain. These findings indicate that activation of joint mechanonociceptors causes reflex sympathetic discharges that could further augment joint pain sensitivity.

So far this article has focused on peripheral sensory input and central mechanisms, although clearly modulation through cognitive, genetic, affective, and environmental influences forms the net pain experience. The remainder of the article focuses on constitutional and environmental factors that may modulate the pain experience.

Constitutional factors

Pain has long been recognized as a complex sensory and emotional experience. Each individual has a unique experience of pain influenced by his or her life experience and genotypic profile. An individual's stable psychologic characteristics (trait) and the immediate psychologic context in which pain is experienced (state) both influence perception of pain.

A full understanding of pain requires consideration of psychologic and social environmental processes mediating a patient's response to his or her disease. The biopsychosocial model is a useful approach to understanding and assessing the experience of pain in people who have OA. Numerous studies have supported the importance of psychologic factors in understanding OA pain. Two of the most important factors are self-efficacy and pain catastrophizing. Self-efficacy has been defined as an individual's confidence in their ability to accomplish a desired task (eg, control arthritis pain). Keefe and colleagues found that patients who had OA who reported higher self-efficacy for pain control had higher thresholds and tolerance for thermal pain stimuli. Furthermore, increases in self-efficacy occurring over the course of a pain coping skills training protocol for patients who had OA was found to be one of the most important predictors of short- and long-term treatment outcome. In fact, Lorig and colleagues found that increases in self-efficacy that occurred following participation in an arthritis self-help intervention were related to improvements in pain and psychologic functioning at 4 years' follow-up. Pain catastrophizing refers to the tendency to focus on, ruminate on, and feel helpless in the face of pain. Patients who have OA who catastrophize report higher levels of pain, psychologic distress, and physical disability and also exhibit more pain behavior. Pain catastrophizing has also been shown to relate to abnormal processing of pain signals in imaging studies, suggesting it may influence pain perception in a fundamental fashion.

OA pain occurs in a social context and factors such as social support can play an important role in determining how patients adjust to arthritis pain. Patients and their partners, however, may vary with respect to their abilities to communicate about and manage OA pain as a couple. In a recent study, we examined key aspects of pain communication (self-efficacy for pain communication and holding
back from discussing pain and arthritis-related concerns) in patients who had OA and their partners. Results indicated that patients who reported higher levels of self-efficacy for pain communication experienced much lower levels of pain and physical and psychologic disability, and their partners reported much lower levels of negative affect. Patients who reported holding back on discussions about pain and related arthritis concerns experienced much higher levels of psychologic disability. When partners reported they held back on discussions of pain and related arthritis concerns, they reported higher levels of caregiver strain and their patient-partners were more likely to report high levels of psychologic disability. Taken together, these findings suggest that patients' and partners' self-efficacy for pain communication and tendency to hold back on pain communication may be important in understanding patient and partner adjustment to OA pain. These findings also underscore the importance of involving spouses of patients who have OA in pain management efforts, something that has been shown to improve the outcomes of pain coping skills training.[74], [75]

Further, CNS processing associated with pain perception is closely integrated with hypothalamic-pituitary axis and autonomic nervous system activity. Variations in pain perception within populations may reflect genetic polymorphisms in all three systems, with current attention being focused on serotonin transporter reuptake protein, alpha-2 receptor, and catechol-O-methyltransferase, although several other candidate genes are under review.[45]

Environmental stimuli

In the presence of OA local stimuli that typically would not be noxious can precipitate alteration in the severity of pain either through microstructural damage of the joint or by decreasing the pain threshold level. There is evidence that patients who have OA do experience fluctuations in pain severity or exacerbations of pain.[26], [81] Some of the factors that could predispose to fluctuations in pain severity are discussed here.

Physical Activity

Numerous studies have assessed the relation of physical activity to the risk for radiographic knee OA with little or no attention paid to the relation of physical activity and OA symptoms. These include studies of runners,[82], [83], [84] heavy physical activity in daily life,[85] and occupational activities, including prolonged standing and knee-bending activities;[86], [87], [88], [89] however, few if any of these studies have investigated the relation of these activities to symptom severity. There is a paucity of epidemiologic data to explain which particular activities are painful or more injurious than others; however, we know from clinical practice that different activities predispose to exacerbation of pain, whereas in a normal joint they typically would not. Identification of these factors that exacerbate pain is important because these are potentially modifiable.

Footwear

Appropriate supportive footwear is recommended in guidelines for treating symptomatic OA, although there are few data to support this recommendation.[90]
There are several ways in which footwear can potentially modify impact loading through the lower limb and thus reduce impact that potentially may lead to pain in subjects who have OA. Impact force during locomotion increases with increasing age as a function of diminishing foot position awareness;[91] this impact force could be reduced through the addition of supportive shoes.[92]

Another link between footwear and knee loads comes from gait analysis studies demonstrating that high-heeled shoes increase compressive forces across the patellofemoral and medial tibiofemoral joints.[93] Women's shoes with even only moderately high heels (1.5 in) were found to increase the forces that strain the tibiofemoral and patellofemoral joints during walking.[94] Given the increased predilection for women experiencing symptomatic knee OA (female to male ratio is typically reported as 2:1) clarifying the impact high heeled shoes have on symptoms could have public health import.

Injury and Trauma

For both genders, a past history of injury to the stabilizing or load-bearing structures of the knee renders the joint highly vulnerable to radiographic OA in subsequent years.[95] People who have OA have quadriceps weakness[96] and impaired proprioception[97] that makes them more susceptible to falls[98] and injury risk. In contrast to the knowledge about the development of radiographic OA following injury, the relationship of pain exacerbation in subjects with pre-existing OA to joint injury/falls/trauma remains unknown and warrants further exploration.

Weather

Many people believe that weather conditions can influence joint pain, but science offers little proof.[99],[100] If the phenomenon were real, cause-and-effect mechanisms might provide clues that would aid treatment of joint pain. Some theorize that alterations in barometric pressure and humidity can alter the synovial fluid (volume and content) in the joint and predispose to alteration in symptoms. The factors that have been considered include ambient temperature, barometric pressure, relative humidity, sunshine, wind speed, and precipitation; however, the literature on the subject is sparse, conflicting, and vulnerable to bias.[101],[102] For patients who believe that weather can influence their pain, the biologic mechanisms may not be fully understood, but the effect seems to be real.

Summary

The pathophysiology of pain in OA is complex and similarly the symptomatic presentation in OA is diverse and heterogeneous. Attention to the many modulating factors that alter the experience of pain may improve the way we treat this disease.

REFERENCES:

30 Burr D.B.: The importance of subchondral bone in the progression of osteoarthritis. *J Rheumatol Suppl* 70. 77-80.2004;[Review] [13 refs] Citation
80 Porter L, Keeffe F, Wellington C, et al. Pain communication in the context of osteoarthritis: patient and partner self-efficacy for pain communication and holding back from discussion of pain and arthriti-
100 Wilder F.V., Hall B.J., Barrett J.P.: Osteoarthritis pain and weather. Rheumatology 42. (8): 955-958.2003; Abstract